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In a recent paper' Kamke stated that the property expressed by Cauchy's
integral theorem had never been proved for the case of a function analytic
interior to an arbitrary rectifiable Jordan curve, continuous in the corre-
sponding closed region. A proof was then supplied by Denjoy.2 The
following proof is much more immediate than that of Denjoy, although
not so elementary.
THEOREM I. If C is a rectifiable Jordan curve and if the function f(z)

is analytic interior to C, continuous in the corresponding closed region, then
we have

I f(z) dz= 0.

The integral of an arbitrary polynomial p(z) over C is zero, for that
integral can be expressed as the limit as n becomes infinite of the integral
of p(z) over a suitably chosen closed polygon 7r, whose vertices lie on C;
the latter integral is clearly zero. The function f(z) of Theorem I, being
analytic interior to C and continuous on and within C, can be represented
in the closed interior of C as the limit of a uniformly convergent sequence of
polynomials.3 This sequence can be integrated over C term by term, so
Theorem I is established.
Theorem I extends easily to the case of a limited region D bounded by

a finite number of non-intersecting rectifiable Jordan curves, if f(z) is
analytic interior to D, continuous in the corresponding closed region. In
such a closed region the function f(z) can be expressed as the limit of a uni-
formly convergent sequence of rational functions of z whose poles lie exterior
to the closed region.4 The integral of such a rational function over the
complete boundary of D is zero; hence the corresponding integral of f(z)
is also zero.

In particular, Cauchy's integral formula is valid under the hypothesis of
Theorem I, or under the more general hypothesis just mentioned.
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Let the set { (Pn(x) I be an ortho-normal set of functions on the interval
(a, b) and let M be a constant such that

(Pn(x) M, n = 0, 1, 2, . ..;
then the Fourier expansion of any integrable function f(x) will be

f(X) E Cn(Pn (x),
0

where
fb

a
We introduce the notation

JP(f) = Jp= ( f(X) IPdx>P, Sp,J = Sp' = cE|
0

where 1 < p < 2, p' > 2p + p = 1. It will be assumed throughout
'p P/

that p and p' satisfy these relations.
In terms of this notation F. Riesz's' theorems can be stated, for a uni-

formly bounded ortho-normal set of functions, as follows.
(A) If f(x)cLp, then

2-p

Sp< MP Jp.
(B) If the series Cn P is convergent, then the constants cn are the

0

Fourier coefficients of a function f(x)cLp,, and, moreover,
2-p

Jp, < M P Sp.
As was called to my attention by Professors Hille and Tamarkin, in

the case of the expansion of the function
fx 2= 2
f 1 x)
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